China Custom Trailer Components Landing Gear with Gearbox Inside or Outside gear patrol

Product Description

Product Description :

 

Landing gear for  trailers and trucks
 
Operation:  both Single-Side Operation and Double-Side Operation type.
Gearbox type:  both Gearbox inside and Gearbox outside type
Sand shoe:  T-Shoe, Casting T-Shoe, S-Shoe, R-Shoe and A-Shoe.
Capacity:   5ton, 8ton, 15ton, 20ton,25ton, 28ton, 30ton and 35ton.
 
Design:  Common type, Similar to FUWA, JOST, HOLLAND,YORK etc
Production Capacity:  5000 pairs per month
Package:  By pallet, By wooden case or as your requirement
Main Market:  South-east Asia,  South America, Africa, Australia, Russia, Middle East, etc

Model Number UT25TA UT28TA UT35TA
Static Load Capacity(T) 80 80 80
Lifting Capacity(T) 25 28 35
High Gear(mm) 4.33 5.42 5.42
Low Gear(mm) 0.57 0.72 0.72
Travel Max 14″17″19″ 14″17″19 14″17″19
Assembly height(mm)
Standard Weight(Kg)

Production Details:

Productive Process:

FAQ:
 
Q1: How do you guarantee quality?
A: We take quality inspect records from raw material to finished product.
   The former department bear 100% responsibility for next process.
 
Q2: Can you produce if we have samples only?
A: Our technical ability is strong enough to deal with different types of spring.
   Sample drawing and customers’ interests will be protected well.
 
Q3: Is it possible to have sample for quality testing?
A: Same or similar sample are available for free.
 
Q4: What is your MOQ?
A: For common material size, MOQ requires 30~50 pcs;
   For special material size, Moq requires 3 ton or more;

Q5: What about the package of the product?
A:The goods will be packed according to your requirements and in well protection before delivery.
 
Q6: What is your terms of payment?
A: T/T, L/C, Western Union,
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Customer Service
Warranty: 6W Km
Type: Jack
Certification: ISO/TS16949
Loading Weight: 28 Tons
ABS: Without ABS
Samples:
US$ 120/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

screw gear

Are screw gears suitable for high-torque applications?

Using screw gears, also known as worm gears, in high-torque applications requires careful consideration. The torque capacity of screw gears can be a limiting factor due to their unique design and characteristics. Here’s a detailed explanation of the suitability of screw gears for high-torque applications:

Yes, screw gears can be suitable for high-torque applications, but there are certain limitations to consider:

  • Lower Torque Capacity: Screw gears generally have a lower torque capacity compared to other gear types, such as spur gears or helical gears. The sliding contact between the worm gear and worm wheel, coupled with the high gear ratios typically associated with screw gears, can result in higher contact stresses and increased wear. Therefore, screw gears are generally not the first choice for applications with extremely high torque requirements.
  • Efficiency and Heat Generation: In high-torque applications, the efficiency of the gear system becomes crucial. Screw gears, due to their sliding motion and higher friction compared to other gear types, can have lower mechanical efficiency. This lower efficiency leads to increased heat generation, which may be a concern in high-torque applications where heat dissipation becomes challenging. Proper lubrication, cooling, and heat management strategies are important to ensure reliable operation under high torque conditions.
  • Load Distribution: The load distribution in a screw gear mechanism is not as uniform as in some other gear types. The load is concentrated on a limited number of teeth, which can lead to higher tooth stresses and potential wear. This concentration of load can be a limiting factor in high-torque applications, as it can result in premature gear failure or reduced lifespan.
  • Application-Specific Considerations: While screw gears may have limitations in high-torque applications, there are scenarios where they can still be suitable. For example, in applications that require precise positioning, heavy loads, or the ability to hold position without additional braking mechanisms, the self-locking feature of screw gears can be advantageous. Additionally, advancements in gear design, materials, and lubrication can help improve the torque capacity and performance of screw gears in specific high-torque applications.

When considering the use of screw gears in high-torque applications, it is important to carefully evaluate the specific torque requirements, operating conditions, and other factors such as speed, duty cycle, and environmental considerations. Consulting with experienced engineers and conducting thorough analysis will help determine whether screw gears are suitable or if alternative gear types should be considered to meet the high-torque demands of the application.

screw gear

How do you ensure proper alignment when connecting screw gears?

Ensuring proper alignment when connecting screw gears is crucial for their efficient and reliable operation. Proper alignment helps minimize noise, vibrations, and premature wear, resulting in improved performance and longevity of the gear system. Here’s a detailed explanation of how to ensure proper alignment when connecting screw gears:

  • Use Precision Machining: Achieving accurate alignment starts with precision machining of the gear components. The worm gear and worm wheel should be machined to tight tolerances, ensuring proper tooth profile, pitch, and concentricity. High-quality manufacturing processes help ensure the components are dimensionally accurate, which facilitates proper alignment.
  • Consider Mounting Configuration: The mounting configuration plays a significant role in aligning screw gears. Whether the gear system is mounted on a shaft or a frame, it is important to carefully follow the manufacturer’s guidelines or engineering specifications for proper mounting. This may involve using specific mounting hardware, such as flanges, couplings, or adapters, to ensure secure and precise alignment.
  • Verify Axial Alignment: Axial alignment refers to the alignment of the worm gear and the worm wheel along the gear’s axis of rotation. To verify axial alignment, measurements such as center distance, parallelism, and axial runout should be taken. Precision measuring tools, such as dial indicators or laser alignment systems, can be used to ensure the components are aligned within the specified tolerances.
  • Check Radial Alignment: Radial alignment refers to the alignment of the worm gear and the worm wheel in the radial direction. It ensures that the gear meshing occurs at the proper contact point along the gear teeth. Radial alignment can be checked by measuring the radial runout or tooth contact pattern. Adjustments can be made by shimming or using spacers to achieve the desired alignment.
  • Consider Preloading: Preloading the screw gear system can help improve alignment and reduce backlash. Preloading involves applying a controlled axial force to the gear components to eliminate any clearance or play between the teeth. This can be achieved through various methods, such as using adjustable bearings or applying a preloaded spring mechanism. Preloading should be done within the manufacturer’s recommendations to avoid excessive loading that could lead to premature wear or damage.
  • Follow Manufacturer Guidelines: Manufacturers often provide specific guidelines and recommendations for aligning their screw gear products. These guidelines may include recommended tolerances, alignment procedures, and suggested tools or techniques. It is important to carefully review and follow these guidelines to ensure proper alignment and to maintain any warranty or support provided by the manufacturer.
  • Consult with Experts: If you are unsure about the alignment process or encounter challenges in aligning screw gears, it is beneficial to consult with experts or experienced engineers. They can provide guidance, troubleshooting assistance, or even perform precision alignment using specialized equipment or techniques.

By following these practices and taking the necessary alignment measures, you can ensure proper alignment when connecting screw gears. This alignment process helps optimize the performance, efficiency, and service life of the gear system.

screw gear

Are there different types of screw gears available?

Yes, there are different types of screw gears available, each with its variations in design and functionality. These variations cater to specific applications and requirements. Here are some of the commonly used types of screw gears:

  • Single-Thread Worm Gears: Single-thread worm gears have a single helical thread on the worm. They provide a relatively higher gear ratio and are commonly used in applications requiring moderate torque and precision positioning. Single-thread worm gears are widely employed in industries such as manufacturing, automotive, and machinery.
  • Multi-Thread Worm Gears: Multi-thread worm gears have multiple helical threads on the worm, typically two or more. The presence of multiple threads increases the contact area and allows for higher torque transmission. Multi-thread worm gears offer higher gear reduction ratios and are suitable for applications requiring greater torque multiplication, such as heavy-duty machinery and high-load lifting systems.
  • Fine-Pitch Worm Gears: Fine-pitch worm gears have a smaller pitch, meaning there are more teeth per unit length of the worm. This design allows for finer control and precise positioning. Fine-pitch worm gears find applications in industries where accurate motion control is critical, such as robotics, automation, and optics.
  • Coarse-Pitch Worm Gears: Coarse-pitch worm gears have a larger pitch, resulting in fewer teeth per unit length of the worm. This design provides higher torque transmission and is suitable for applications requiring heavy-duty power transmission. Coarse-pitch worm gears are commonly used in industries like manufacturing, material handling, and conveyors.
  • Right-Handed and Left-Handed Worm Gears: Screw gears can be classified as right-handed or left-handed based on the direction of the helical thread. In a right-handed worm gear, the helical thread advances in a clockwise direction when viewed from the end of the worm. In a left-handed worm gear, the helical thread advances counterclockwise. The choice between right-handed and left-handed worm gears depends on the specific application and the desired rotational direction.
  • Non-Throated and Throated Worm Gears: Non-throated worm gears have a cylindrical worm without a groove, while throated worm gears have a groove or a notch on the worm. The presence of a throat allows for greater contact between the worm and the worm wheel, increasing the gear meshing efficiency and load-carrying capacity. Throated worm gears are commonly used in applications where higher efficiency and load capacity are required.
  • Self-Locking Worm Gears: Self-locking worm gears are designed to have a high self-locking capability. The helical thread angle and the friction between the worm and the worm wheel prevent the worm wheel from backdriving the worm when the system is at rest. Self-locking worm gears are widely used in applications that require holding a position without the need for additional braking or locking mechanisms, such as elevators, lifts, and positioning systems.

These are some of the different types of screw gears available in the market. The selection of a specific type depends on factors such as torque requirements, gear reduction ratio, precision positioning, load capacity, and self-locking capabilities, among others. Understanding the characteristics and variations of screw gears allows for choosing the most suitable type for a given application.

China Custom Trailer Components Landing Gear with Gearbox Inside or Outside gear patrolChina Custom Trailer Components Landing Gear with Gearbox Inside or Outside gear patrol
editor by CX 2024-03-26